首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1291篇
  免费   79篇
  2021年   20篇
  2020年   14篇
  2019年   21篇
  2018年   19篇
  2017年   22篇
  2016年   28篇
  2015年   50篇
  2014年   42篇
  2013年   89篇
  2012年   121篇
  2011年   107篇
  2010年   69篇
  2009年   46篇
  2008年   85篇
  2007年   98篇
  2006年   83篇
  2005年   76篇
  2004年   48篇
  2003年   58篇
  2002年   65篇
  2001年   16篇
  2000年   14篇
  1999年   15篇
  1998年   9篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1987年   3篇
  1986年   4篇
  1985年   9篇
  1984年   3篇
  1982年   4篇
  1981年   3篇
  1979年   4篇
  1978年   5篇
  1974年   7篇
  1973年   6篇
  1972年   5篇
  1971年   2篇
  1970年   5篇
  1969年   6篇
  1968年   8篇
  1967年   3篇
  1965年   2篇
排序方式: 共有1370条查询结果,搜索用时 31 毫秒
31.
Chromosomes of 228 captive specimens of the family Bovidae have been investigated. The examined animals were classified into the subfamilies Aepycerotinae, Reduncinae, Antilopinae, Alcelaphinae, Hippotraginae and Bovinae. Polymorphism for one fusion was identified in the species: Aepyceros melampus, 2n = 59–60; Redunca fulvorufula, 2n = 56–57; Kobus e. ellipsiprymnus, 2n = 50–52; Kobus e. defassa, 2n = 52–54 and Syncerus c. nanus, 2n = 54–55. This is the first study to reveal fusion 7;29 in Kobus e. defassa and simultaneously the respective polymorphism. Variation in the diploid number of chromosomes is also known in species: Oryx g. dammah and Oryx g. leucoryx but in this study only fusion 1;25 was identified in both karyotyped species. Our study showed that 13% of investigated individuals were polymorphic for the centric fusion and demonstrated the important role of cytogenetic screening in captive animals at zoological gardens.  相似文献   
32.

Background  

The aim of the present study was to investigate biochemical and oxidative stress responses to experimental F. tularensis infection in European brown hares, an important source of human tularemia infections.  相似文献   
33.
34.
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.  相似文献   
35.

The nucleus-encoded 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) regulates cyclophilin D (cypD) in the mitochondrial matrix. CypD regulates opening of mitochondrial permeability transition pores. Both mechanisms may be affected by amyloid β peptides accumulated in mitochondria in Alzheimer's disease (AD). In order to clarify changes occurring in brain mitochondria, we evaluated interactions of both mitochondrial proteins in vitro (by surface plasmon resonance biosensor) and detected levels of various complexes of 17β-HSD10 formed in vivo (by sandwich ELISA) in brain mitochondria isolated from the transgenic animal model of AD (homozygous McGill-R-Thy1-APP rats) and in cerebrospinal fluid samples of AD patients. By surface plasmon resonance biosensor, we observed the interaction of 17β-HSD10 and cypD in a direct real-time manner and determined, for the first time, the kinetic parameters of the interaction (ka 2.0?×?105 M1s?1, kd 5.8?×?104 s?1, and KD 3.5?×?10–10 M). In McGill-R-Thy1-APP rats compared to controls, levels of 17β-HSD10–cypD complexes were decreased and those of total amyloid β increased. Moreover, the levels of 17β-HSD10–cypD complexes were decreased in cerebrospinal fluid of individuals with AD (in mild cognitive impairment as well as dementia stages) or with Frontotemporal lobar degeneration (FTLD) compared to cognitively normal controls (the sensitivity of the complexes to AD dementia was 92.9%, that to FTLD 73.8%, the specificity to AD dementia equaled 91.7% in a comparison with the controls but only 26.2% with FTLD). Our results demonstrate the weakened ability of 17β-HSD10 to regulate cypD in the mitochondrial matrix probably via direct effects of amyloid β. Levels of 17β-HSD10–cypD complexes in cerebrospinal fluid seem to be the very sensitive indicator of mitochondrial dysfunction observed in neurodegeneration but unfortunately not specific to AD pathology. We do not recommend it as the new biomarker of AD.

  相似文献   
36.
There is ample evidence that microbial processes can exhibit large variations in activity on a field scale. However, very little is known about the spatial distribution of the microbial communities mediating these processes. Here we used geostatistical modelling to explore spatial patterns of size and activity of the denitrifying community, a functional guild involved in N-cycling, in a grassland field subjected to different cattle grazing regimes. We observed a non-random distribution pattern of the size of the denitrifier community estimated by quantification of the denitrification genes copy numbers with a macro-scale spatial dependence (6–16 m) and mapped the distribution of this functional guild in the field. The spatial patterns of soil properties, which were strongly affected by presence of cattle, imposed significant control on potential denitrification activity, potential N2O production and relative abundance of some denitrification genes but not on the size of the denitrifier community. Absolute abundance of most denitrification genes was not correlated with the distribution patterns of potential denitrification activity or potential N2O production. However, the relative abundance of bacteria possessing the nosZ gene encoding the N2O reductase in the total bacterial community was a strong predictor of the N2O/(N2 + N2O) ratio, which provides evidence for a relationship between bacterial community composition based on the relative abundance of denitrifiers in the total bacterial community and ecosystem processes. More generally, the presented geostatistical approach allows integrated mapping of microbial communities, and hence can facilitate our understanding of relationships between the ecology of microbial communities and microbial processes along environmental gradients.  相似文献   
37.
The whooping cough agent Bordetella pertussis secretes an adenylate cyclase toxin (CyaA) that through its large carboxy-proximal Repeat-in-ToXin (RTX) domain binds the complement receptor 3 (CR3). The RTX domain consists of five blocks (I–V) of characteristic glycine and aspartate-rich nonapeptides that fold into five Ca2+-loaded parallel β-rolls. Previous work indicated that the CR3-binding structure comprises the interface of β-rolls II and III. To test if further portions of the RTX domain contribute to CR3 binding, we generated a construct with the RTX block II/III interface (CyaA residues 1132–1294) linked directly to the C-terminal block V fragment bearing the folding scaffold (CyaA residues 1562–1681). Despite deletion of 267 internal residues of the RTX domain, the Ca2+-driven folding of the hybrid block III/V β-roll still supported formation of the CR3-binding structure at the interface of β-rolls II and III. Moreover, upon stabilization by N- and C-terminal flanking segments, the block III/V hybrid-comprising constructs competed with CyaA for CR3 binding and induced formation of CyaA toxin-neutralizing antibodies in mice. Finally, a truncated CyaAΔ1295-1561 toxin bound and penetrated erythrocytes and CR3-expressing cells, showing that the deleted portions of RTX blocks III, IV, and V (residues 1295–1561) were dispensable for CR3 binding and for toxin translocation across the target cell membrane. This suggests that almost a half of the RTX domain of CyaA is not involved in target cell interaction and rather serves the purpose of toxin secretion.  相似文献   
38.
We describe a novel, fundamental property of nucleobase structure, namely, pyramidilization at the N1/9 sites of purine and pyrimidine bases. Through a combined analyses of ultra-high-resolution X-ray structures of both oligonucleotides extracted from the Nucleic Acid Database and isolated nucleotides and nucleosides from the Cambridge Structural Database, together with a series of quantum chemical calculations, molecular dynamics (MD) simulations, and published solution nuclear magnetic resonance (NMR) data, we show that pyramidilization at the glycosidic nitrogen is an intrinsic property. This property is common to isolated nucleosides and nucleotides as well as oligonucleotides—it is also common to both RNA and DNA. Our analysis suggests that pyramidilization at N1/9 sites depends in a systematic way on the local structure of the nucleoside. Of note, the pyramidilization undergoes stereo-inversion upon reorientation of the glycosidic bond. The extent of the pyramidilization is further modulated by the conformation of the sugar ring. The observed pyramidilization is more pronounced for purine bases, while for pyrimidines it is negligible. We discuss how the assumption of nucleic acid base planarity can lead to systematic errors in determining the conformation of nucleotides from experimental data and from unconstrained MD simulations.  相似文献   
39.
Secondary woodlands in South Korea cover most mountains from low to middle elevations. While general patterns of forest succession are well understood, little is known about mechanisms of stand recovery after disturbance. We examined the spatio-temporal variations in establishment, growth, size inequality, and mode of competition among trees in a 50-year-old post-logging Quercus mongolica-dominated stand. We further compared the growth and stem allometry of single trees, presumably of seed origin, with multi-stemmed trees resprouting from stumps. Q. mongolica formed the upper canopy 16–22 m tall, 88.3% of total stand basal area, and 36.2% of total stem density, with most trees established during the first post-logging decade (51.2% were resprouts). During the first three decades, the Q. mongolica recruits grew exponentially, and disproportionately more in diameter than few older reserved trees left after the last cutting. This substantially decreased size inequality. The reverse trend was observed from 1994 to 2004: larger trees grow more, indicating an increasing asymmetry of competition for light. Neighborhood analysis revealed that when target trees had more or larger neighbors, their exponential phase of growth was reduced and maximum size was decreased. After the 50 years of stand development, more than 70% of Q. mongolica showed growth decline as a result of competitive stress, and mortality was about 30%, concentrated in smaller size classes. Compared to single stems, resprouts within clones do not seem to compete less asymmetric as might be expected based on studies of clonal herbaceous plants and physiological integration within genets. As Q. mongolica was also negatively affected by competition from woody species currently prevailing in the lower tree stratum (Tilia amurensis, Acer mono, Fraxinus rhynchophylla, Acer pseudosieboldianum), we predict the stand will become increasingly dominated by these more shade-tolerant trees.  相似文献   
40.
α-Mannosidosis is a lysosomal storage disorder caused by α-mannosidase deficiency. Clinical course of the disease ranges from severe infantile to milder juvenile type and includes mental retardation, skeletal deformities, coarse facies, hepatomegaly and hearing loss. The aim of the study was to analyse mitochondrial ultrastructure and function in cultivated fibroblasts from three patients with α-mannosidosis. All patients were homozygous for the c.2248C>T mutation in the MAN2B1 gene encoding lysosomal α-mannosidase. The mutation results in incorrect protein folding and severe decrease of α-mannosidase activity. The misfolded protein is retained by the control system of endoplasmic reticulum (ER). In analysed fibroblasts, we observed dilated ER, higher amount of aberrant mitochondria and reduced mitochondrial mass compared to controls. Respiratory chain complex IV, cytochrome c oxidase (COX), activity and the ratio between COX and citrate synthase (control enzyme) were significantly increased in comparison to controls (P < 0.05). Furthermore, the activity at least from one of other respiratory chain complexes was increased in each studied cell line. Mitochondrial membrane potential as well as reactive oxygen species production were comparable with controls. Based on our results, we hypothesize more profound effect of swelled and damaged mitochondria and ER dilatation on tissues with higher energy demand than fibroblasts have.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号